359 research outputs found

    Horologium II: a Second Ultra-faint Milky Way Satellite in the Horologium Constellation

    Full text link
    We report the discovery of a new ultra-faint Milky Way satellite candidate, Horologium II, detected in the Dark Energy Survey Y1A1 public data. Horologium II features a half light radius of rh=47±10r_{h}=47\pm10 pc and a total luminosity of MV=2.60.3+0.2M_{V}=-2.6^{+0.2}_{-0.3} that place it in the realm of ultra-faint dwarf galaxies on the size-luminosity plane. The stellar population of the new satellite is consistent with an old (13.5\sim13.5 Gyr) and metal-poor ([Fe/H]2.1\sim-2.1) isochrone at a distance modulus of (mM)=19.46±0.20(m-M)=19.46\pm0.20, or a heliocentric distance of 78±878\pm8 kpc, in the color-magnitude diagram. Horologium II has a distance similar to the Sculptor dwarf spheroidal galaxy (82\sim82 kpc) and the recently reported ultra-faint satellites Eridanus III (87±887\pm8 kpc) and Horologium I (79±879\pm8 kpc). All four satellites are well aligned on the sky, which suggests a possible common origin. As Sculptor is moving on a retrograde orbit within the Vast Polar Structure when compared to the other classical MW satellite galaxies including the Magellanic Clouds, this hypothesis can be tested once proper motion measurements become available.Comment: 5 pages, 3 figures, 1 table. Accepted for publication in ApJL. (w.r.t. v1: figures updated; minor changes throughout the text

    Human Motor Control and the Design and Control of Backdriveable Actuators for Human-Robot Interaction

    Full text link
    The design of the control and hardware systems for a robot intended for interaction with a human user can profit from a critical analysis of the human neuromotor system and human biomechanics. The primary observation to be made about the human control and ``hardware’’ systems is that they work well together, perhaps because they were designed for each other. Despite the limited force production and elasticity of muscle, and despite slow information transmission, the sensorimotor system is adept at an impressive range of motor behaviors. In this thesis I present three explorations on the manners in which the human and hardware systems work together, hoping to inform the design of robots suitable for human-robot interaction. First, I used the serial reaction time (SRT) task with cuing from lights and motorized keys to assess the relative contribution of visual and haptic stimuli to the formation of motor and perceptual memories. Motorized keys were used to deliver brief pulse-like displacements to the resting fingers, with the expectation that the proximity and similarity of these cues to the response motor actions (finger-activated key-presses) would strengthen the motor memory trace in particular. Error rate results demonstrate that haptic cues promote motor learning over perceptual learning. The second exploration involves the design of an actuator specialized for human-robot interaction. Like muscle, it features series elasticity and thus displays good backdrivability. The elasticity arises from the use of a compressible fluid while hinged rigid plates are used to convert fluid power into mechanical power. I also propose impedance control with dynamics compensation to further reduce the driving-point impedance. The controller is robust to all kinds of uncertainties. The third exploration involves human control in interaction with the environment. I propose a framework that accommodates delays and does not require an explicit model of the musculoskeletal system and environment. Instead, loads from the biomechanics and coupled environment are estimated using the relationship between the motor command and its responses. Delays inherent in sensory feedback are accommodated by taking the form of the Smith predictor. Agreements between simulation results and empirical movements suggests that the framework is viable.PhDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120675/1/gloryn_1.pd

    A hero's little horse: discovery of a dissolving star cluster in Pegasus

    No full text
    We report the discovery of an ultra-faint stellar system in the constellation of Pegasus. This concentration of stars was detected by applying our overdensity detection algorithm to the Sloan Digital Sky Survey Data Release 10 and confirmed with deeper photometry from the Dark Energy Camera (DECam) at the 4 m Blanco telescope. The best-fitting model isochrone indicates that this stellar system, Kim 1, features an old (12 Gyr) and metal-poor ([Fe/H] ∼ −1.7) stellar population at a heliocentric distance of 19.8 ± 0.9 kpc. We measure a half-light radius of 6.9 ± 0.6 pc using a Plummer profile. The small physical size and the extremely low luminosity are comparable to the faintest known star clusters Segue 3, Koposov 1 and 2, and Munoz 1. However, Kim 1 exhibits a lower ˜ star concentration and is lacking a well-defined center. It also has an unusually high ellipticity and irregular outer isophotes, which suggests that we are seeing an intermediate mass star cluster being stripped by the Galactic tidal field. An extended search for evidence of an associated stellar stream within the 3 deg2 DECam field remains inconclusive. The finding of Kim 1 is consistent with current overdensity detection limits and supports the hypothesis that there are still a substantial number of extreme low-luminosity star clusters undetected in the wider Milky Way halo

    Local object crop collision network for efficient simulation of non-convex objects in GPU-based simulators

    Full text link
    Our goal is to develop an efficient contact detection algorithm for large-scale GPU-based simulation of non-convex objects. Current GPU-based simulators such as IsaacGym and Brax must trade-off speed with fidelity, generality, or both when simulating non-convex objects. Their main issue lies in contact detection (CD): existing CD algorithms, such as Gilbert-Johnson-Keerthi (GJK), must trade off their computational speed with accuracy which becomes expensive as the number of collisions among non-convex objects increases. We propose a data-driven approach for CD, whose accuracy depends only on the quality and quantity of offline dataset rather than online computation time. Unlike GJK, our method inherently has a uniform computational flow, which facilitates efficient GPU usage based on advanced compilers such as XLA (Accelerated Linear Algebra). Further, we offer a data-efficient solution by learning the patterns of colliding local crop object shapes, rather than global object shapes which are harder to learn. We demonstrate our approach improves the efficiency of existing CD methods by a factor of 5-10 for non-convex objects with comparable accuracy. Using the previous work on contact resolution for a neural-network-based contact detector, we integrate our CD algorithm into the open-source GPU-based simulator, Brax, and show that we can improve the efficiency over IsaacGym and generality over standard Brax. We highly recommend the videos of our simulator included in the supplementary materials.Comment: RSS 2023 https://sites.google.com/view/locc-rss2023/hom

    Improving Cross-Modal Retrieval with Set of Diverse Embeddings

    Full text link
    Cross-modal retrieval across image and text modalities is a challenging task due to its inherent ambiguity: An image often exhibits various situations, and a caption can be coupled with diverse images. Set-based embedding has been studied as a solution to this problem. It seeks to encode a sample into a set of different embedding vectors that capture different semantics of the sample. In this paper, we present a novel set-based embedding method, which is distinct from previous work in two aspects. First, we present a new similarity function called smooth-Chamfer similarity, which is designed to alleviate the side effects of existing similarity functions for set-based embedding. Second, we propose a novel set prediction module to produce a set of embedding vectors that effectively captures diverse semantics of input by the slot attention mechanism. Our method is evaluated on the COCO and Flickr30K datasets across different visual backbones, where it outperforms existing methods including ones that demand substantially larger computation at inference.Comment: Accepted to CVPR 2023 (Highlight

    A new butterfly-shaped chaotic attractor

    Get PDF
    AbstractIn this paper, a new chaotic system is proposed that consists of six terms including one multiplier and one quadratic term. The characteristics of this system are examined by theoretical and numerical analysis, such as equilibria, their stabilities, Lyapunov exponents and Lyapunov dimension, dissipativity, as well as, Poincaré maps, bifurcations, waveforms, power spectrums are performed. In addition, the forming mechanisms of compound structures of the new chaotic attractor are investigated
    corecore